• Evrim Ağacı

DNA, Kromozom ve Hücre: Çizimler ve Animasyonlar, Gerçekte Olanı Tam Olarak Yansıtmıyor!


Nükleotitlerin boncuk boncuk üzerine dizildiği, DNA'nın meşhur çift sarmal yapısı hepimizin zihinlerine kazınmış halde. Veya kromozomun X şeklindeki çizimleri... Hatta belki Harvard Üniversitesi tarafından hazırlanan şu meşhur hücre animasyonunu izlemiş olabilirsiniz:



Bunlara baktığınızda, bu moleküllerin ve yapıların 3 boyutlu hallerini net bir şekilde gösteren fotoğraflarımız var da, o nedenle bu çizimleri yapıyoruz sanabilirsiniz. Halbuki DNA'ya ait bugüne kadar çekebildiğimiz en yüksek çözünürlüklü fotoğraf, böyle gözükür:



Evet, birkaç nanometrelik silikon sütunlar arasına gerilmiş bir DNA ipliği, elektron mikroskobu altında böyle gözüküyor. O çizimlerde gördüğümüz gibi bazların birbirine bağlandığını, bariz bir şekilde kendi etrafına kıvrılmış sarmal yapısını gözle göremiyoruz. Buna biraz daha yaklaştığımızda, kendini tekrar eden bir dizi görebiliyoruz; ama hepsi bu. Nükleotitler yok, sarmal gözükmüyor:



Elbette DNA'nın şeklini keşfetmek için onu illa direkt görmemiz gerekmiyor. Genetik materyalimizin X ışınlarıyla nasıl etkileştiğini ölçerek, üç boyutlu yapısı hakkında fikir edinebiliyoruz. Örneğin Rosalind Franklin tarafından çekilen ve Watson ile Crick'in DNA'nın çift sarmal yapısını keşfetmesini mümkün kılan X ışını kristalografisinde, DNA'nın ikili sarmal bir yapıya sahip olduğu görülebiliyor:



Ayrıca daha yüksek çözünürlüklü analizler yapabilmemizi sağlayan geçişli ya da transmisyon elektron mikroskobuyla DNA'ya baktığımızda, sarmal yapı birazcık daha belirgin hale geliyor:



Ama yine, o karikatürize DNA çizimin yanına bile yaklaşamıyoruz. Fakat çok sayıda veri hattından gelen bilgileri birleştirerek, DNA'nın 3 boyutlu modelini çıkarmamız mümkün oluyor.



Peki Ya Kromozomlar X Şeklinde mi?


Kromozomlara gelelim. Kromozomlar, DNA'nın yoğun bir şekilde paketlenmesi sonucu ortaya çıkan moleküler yapılara verdiğimiz isim. Onları hep X şeklinde gösteriyor olsak da, hücre döngüsü boyunca kromozomlar, önemsenmeyecek kadar kısa bir süreliğine X şeklinde oluyorlar. Sadece bölünme sırasında kromozomlar çoklanarak kromatit çiftleri halinde bir araya gelirler.


Aslında kromozomlar, X şeklini veren, birbirine sentromerden bağlı olacak biçimde yapışmış ikili yapıda da değildirler. Kromozomlardan genellikle X şeklinde bahsetmemizin 2 nedeni var: İlki, bir genin lokusunu, yani kromozom üzerinde bulunduğu yeri birbirimize anlatmayı kolaylaştırıyor. Mesela 4. kromozomun uzun kolu dediğimizde, genetikten anlayan biri tam olarak nereden söz ettiğimizi bilecektir. İkinci neden ise, kromozomların mikroskop altında en kolay görüldüğü zamanın, bölünme evresi olmasıdır. Bu evrede kromozomlar çoklanarak 2 katına çıktıkları ve kısmen X harfine benzeyen bir şekilde bulundukları için, kromozomun şekli de genellikle böyle hayal edilir. Ama bölünme haricinde kromozomların bu şekle sahip olmadığını bilmenizde fayda var.


Aslına bakarsanız, bölünmekte olmayan kromozomlar çubuk şeklinde de değiller. Daha ziyade, böyle gözükürler:



Bunu da 3 boyutlu bir şekilde modellediğimizde, karşımıza böyle bir şekil çıkıyor:



Burada gördüğünüz iplik, DNA ipliği. Ancak görebileceğiniz gibi, kromozom çiziminde gördüğümüz çubuk veya X şekline sahip değil, daha ziyade yamuk yumuk bir top gibi... Ki bu çok mantıklı, çünkü daha önceden de anlattığımız gibi, küresel bir şekle sahip olmak, daha sivri uçlara sahip şekillerde olmaya nazaran her zaman daha dengeli ve düşük enerjilidir. Ve cisimler, genellikle enerjilerini en aza indirmeye çalışırlar, bu da şekillerini ve hareketlerini belirler. Bir yaprak üzerindeki su damlasının, Dünya'nın küresel şeklinin ve DNA'nın bu şeklinin ardında yatan sebep de bu.


Hücre Animasyonları Doğru mu? Pek Sayılmaz...


Son olarak, hücre animasyonlarına gelelim... Bir ders kitabını açacak veya bir hücre animasyonunu izleyecek olursanız, hücre içerisindeki her şeyin muntazam, kusursuz, düzenli olduğunu sanabilirsiniz. Bu, Dünya'nın en çok okunan biyoloji ders kitabı olan Campbell Biyoloji kitabından alınmış bir hücre fotoğrafı:



Ancak böyle bir sistem, moleküllerin adeta bilinçli olmasını, nerede ne zaman bulunmaları gerektiğini fiziksel yapılarından ötürü bilmelerini gerektirirdi. Halbuki atomların ve moleküllerin bilinci olmadığını biliyoruz. Bu durumda nasıl oluyor da kimyasal süreçler işleyebiliyor?


Çünkü hücre içerisinde muazzam bir kaos var; ancak bu kaos içerisinde sadece kimyasal olarak birbiriyle uyumlu olan tepkimeler yaşanabiliyor, diğerleri yaşanmıyor veya çok daha yavaş yaşanıyor. Lise derslerindeki enzimleri ve bunların kimyasal süreçleri nasıl hızlandırdığını hatırlıyor musunuz? İşte o enzimler yoksa, kimyasallar bir çorba gibi iç içe olsalar da, birbirleriyle anlamlı tepkimelere giremiyorlar veya bu çok uzun süre alıyor. Ne demek istediğimizi anlamak istiyorsanız, bu videoya bir göz atın:



Burada gördüğünüz, sizin nöronlarınız. Sinir hücrelerinizin ucundaki sinaps bölgelerinde yaşanan kimyasal hareketliliği görüyorsunuz. Bunu, Harvard Üniversitesi'nin animasyonu ile kıyaslayınca, arada epey bir fark var gibi gözüküyor, değil mi? Çünkü biri gerçekten olanı gösteriyor, diğeri ise öğrencilere kolaylaştırılmış bir şekilde konuyu anlatmayı hedefliyor. Olanı biteni gözlerinde canlandırabilmelerini sağlamaya çalışıyor. Burada gördüğünüz, gerçekte olan.


Hem de bu bile tam olarak gerçeği yansıtmıyor, çünkü sinapslarda bulunan bütün kimyasal hareketliliği değil, sadece 45 farklı proteini takip ediyorlar. Bunu yapabilmek için araştırmacılar, yüksek yoğunluklu bir lazer kaynağı ile hücre zarının ilgilendiğimiz kısmındaki flüoresan proteinleri parlatıyorlar ve bu bölgenin etrafındaki partlatılmamış proteinlerin hareket etmesiyle, parlatılmış olanlar ve olmayanlar birbirleri içinde dağılıyor. Buna, FRAP metodu deniyor


Yani hücrelerimizin için, bir evin odaları gibi düzenli bir şekilde kompartmantalize edilmiş, her kimyasalın sadece belirli yerlerde bulunabileceği yapılar değiller. Elbette hücre içinde belirli büyüklükteki organeller genellikle belirli yerlerde bulunuyorlar; ancak bunlar da sürekli hareket halindeler. Hücrenin genel bir görüntüsünü yansıtmaya çalışan çizimler, organellerden daha küçük ama sayıca kat kat daha fazla olan moleküllerin karmaşık doğasını yansıtamıyor. Organellerden çok ama çok daha küçük olan bu kimyasallar, hücre içine karmakarışık bir şekilde dağılmış halde bulunuyorlar. Her şeyin iç içe ve üst üste olduğu; ancak gerek enzimlerle, gerek genetik materyalin ürettiği diğer protein yapılar ve ortamda bulunan katalizörlerle, hangi kimyasalların hangileriyle tepkimeye girebileceği sınırlandırılıyor.

Bu, o katalizörleri, enzimleri ve proteinleri kodlayan genetik materyalin son 4 milyar yıldır durmaksızın evrimleşmesinin bir ürünü.

Bunda yapılan hatalar, domino etkisi gibi birçok süreci değiştirebiliyor ve çeşitlilikler yaratıyor. Eğer bunlar, canlıya herhangi bir avantaj sağlıyorsa seçilim nedeniyle daha yaygın hale geliyor, zarar veriyorsa hızla eleniyor ve yok oluyor. Böylece canlılık, adım adım evrimleşmeyi ve bulunduğu ortama uyum sağlamayı sürdürüyor.


Ancak bir dahaki sefere, bir DNA, kromozom veya hücre çizimi gördüğünüzde, bunun sizin kolayca anlayabilmeniz için hazırlanmış bir karikatürizasyon olduğunu hatırlayın. Gerçekte hücreler içinde olup bitenler, bizim kağıt üzerinde gösterebileceğimizden çok ama çok daha karmaşık ve kaotik. Bilim, azimle araştırmayı sürdürdükçe, bu ilginç dünyaya dair yepyeni şeyler öğrenmeye devam ediyoruz.


Yazar: Çağrı Mert Bakırcı


Yazı için Evrim Ağacı'na teşekkür ederiz.

8 görüntüleme

Son Paylaşımlar

Hepsini Gör
  • Beynex Instagram
  • Beynex Facebook
  • Beynex LinkedIn

Beyin egzersiz ve takip platformu.

© 2020, Beynex. Tüm hakları saklıdır.

BEYNEX